DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

نویسندگان

  • I del Rosal
  • L Maron
  • R Poteau
  • F Jolibois
چکیده

Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for instance in cluster chemistry. The reliance of NMR chemical shielding on dynamical effects, such as intramolecular rearrangements or trigonal twists, is also examined for H2Fe(CO)4, K+[HFe(CO)](-), HMn(CO)5 and HRe(CO)5. The accuracy of the theory is also examined for complexes with two dihydrogen ligands (Tp*RuH(H2)2 and [FeH(H2)(DMPE)2]+) and a ruthenium cluster, [H3Ru4(C6H6)4(CO)]+. It is shown that for all complexes studied in this work, the effect of the ligands on the chemical shielding of hydrogen coordinated to metal is suitably calculated, thus yielding a very good correlation between experimental chemical shifts and theoretical chemical shielding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics, Solvents effects and 1H ,13C NMR Shielding :Theoretical studies of Adamantane

Some of the Adamantane properties were calculated in this study. Chemical shift, free energy ofsolvation, free energy of cavity formation, Henry's law constant, and other properties ofAdamantane in dry phase, three solvents and three temperatures have been calculated with Abinitio method base on density functional theory (DFT) at B3lyp/6-31g, B31yp/6-31g*, B3lyp/6-31+g* and B3lyp/6-31++g** leve...

متن کامل

Quantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations

In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...

متن کامل

Quantum Chemical Modeling of 1-(1, 3-Benzothiazol-2-yl)-3-(thiophene-5-carbonyl) thiourea: Molecular structure, NMR, FMO, MEP and NBO analysis based on DFT calculations

In the present work, the quantum theoretical calculations of the molecular structure of the 1-(1, 3-Benzothiazol-2-yl)-3-(thiophene-5-carbonyl) thiourea has been predicted and are evaluated using Density Functional Theory (DFT) in gas phase. The geometry of the title compound was optimized by B3LYP/6-311+G and B3LYP/6-311+G* methods and the experimental geometrical parameters of the title compo...

متن کامل

Experimental and Theoretical Studies on a Derivative of Tetrahydro-1H-Benzodiazepine

N-Cyclohexyl-2,4,4-trimethyl-2,3,4,5-tetrahydro-1H-benzo[b][1,5]diazepine-2-carboxamide (5) was synthesized using an efficient, highly recyclable and eco-friendly catalyst heteropolyacid/triethoxysilyl)propyl]isonicotinamide (HPA/TPI-Fe3O4 nanoparticles) in one-pot. The compound 5 was characterized by FT-IR,1H NMR, 13C NMR, mass spectra, and elemental analysis. The theoretical calculations on 5...

متن کامل

Solid-state NMR spectroscopy and first-principles calculations: a powerful combination of tools for the investigation of polymorphism of indomethacin.

Two polymorphs of indomethacin were investigated by 1H MAS and CRAMPS, and 1H-13C CPMAS and HETCOR NMR techniques. The obtained spectra clearly elucidated the structural differences between the polymorphs, especially the different numbers of indomethacin molecules within the crystallographic asymmetric units and the different schemes of hydrogen bonding among the molecules. Known structure of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008